无理数,无理数有哪些?
无理数有三种:
(1)π,也就是3.1415926…………这类的,只要和π有关系的基本上都是无理数了。
(2)开方开不尽的数。这里“开方开不尽的数”一般是指开方后得到的数,而不是字面解释的那个意思。例如根号2,三次根号2……
(3)还有一种就是这类的:例如:0.101001000100001……,它有规律,但是这个规律是不循环的,每次都多一个0,发现了没。它是无限不循环小数。这个也是无理数。
注意:无限循环小数不是无理数.这些数是没有全部的,就像10000后面还有10001一样.没有办法说全部无理数,只能这样给你分个类.
无理数的概念是什么?
无理数是指不能表示为两个整数的比值的实数。无理数的十进制表示是无限不循环的小数。无理数包括无限不循环小数,如π和e,以及无法通过代数方程的根式表示的数,如√2和√3。无理数在数学中起着重要的作用,它们扩展了实数系统,使得我们能够更好地描述和理解自然界中的现象。无理数的存在性最早由古希腊数学家毕达哥拉斯提出,并在后来得到了严格的证明。
无理数包括什么数?
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e等。
常见的无理数
1.圆周率用希腊字母π表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
2.e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。
3.黄金比例是一个定义为 (√5-1)/2的无理数。 所被运用到的层面相当的广阔,例如:数学、物理、建筑、美术甚至是音乐。
4.√2是一个无限不循环小数,√2是一个无理数,√2约为1.4142。
5.√5是一个无限不循环小数,√5是一个无理数,√5约为2.236。
无理数有哪些?
无限不循环小数称为无理数。
基本性质
常见的无理数形式:
1.开方开不尽的数;
2.含π的数;
3.无限不循环小数,如1.010010001……
无理数的表示符号?
无理数 = R - Q,因此数学家没有定义无理数的符号。
1、无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
2、在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
扩展资料
无理数的来源:
公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。
这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。
还没有评论,来说两句吧...