pcdandan,如何挖掘数学题中的隐含条件

伏羲号

pcdandan,如何挖掘数学题中的隐含条件?

所谓的隐含条件,就是题设中隐蔽的条件,它们常常巧妙地隐蔽在题设的背后,不易被发现和利用。而在解题时思路受阻,常常就是由于感到题设条件不足而造成的。因此,在解题途径的探索过程中,挖掘隐含条件是不可忽视的重要环节,是解数学题的关键所在。

pcdandan,如何挖掘数学题中的隐含条件

一道数学题是否解得正确、合理、迅速、巧妙,甚至是否有创造性,往往就在于能否挖掘和利用好隐含条件。今天为大家了隐含条件的几种主要表现形式,若能善于从隐含条件的表现形式人手,顺藤摸瓜,捕捉隐含信息,往往可以迅速为解题提供关键线索或问题解决的思路,收到事半功倍之效。

那么隐含条件应当从哪几方 面去挖掘呢?

回归定义

数学定义是推导公式、定理的依据,也是解题常用的一把钥匙,它能为解题挖掘出最本质 的条件,使解题简捷明快。

例1 解方程x2+6x+10[KF)]+[KF(]x2-6x+10[KF)]=10。

简析:用通常的办法,需要两次平方才能将原方程化为有理方程。注意到原方程就是[KF(]( x+3)2+1[KF)]+[KF(](x-3)2+1[KF)]=10,[KF(](x+3)2+y2[KF)]+[KF(](x-3)2+y 2[KF)]=10,这是以点F1(-3,0)和F2(3,0)为焦点,长轴长为10的椭圆方程,即[SX(]x2[ ] 25[SX)]+[SX(]y2[]16[SX)]=1(隐含条件),从而当y2=1时,就有x=±[SX(]5[]4[SX)][ KF(]15[KF)]。

观察结构特征

发掘隐含条件往往需要运用感知,敏锐地观察,大胆运用直觉思维,迅速作出判断,从隐蔽 的数学关系中找到问题的实质。而仔细观察,抓住结构特征,往往能有效地挖掘隐含条件。

例2 已知二次方程(b-c)x2+(c-a)x+a-b=0(b≠0)有相等的实数根,求证:2b=a+c。

简析:常规方法是由判别式 =0,经过因式分解得到(2b-a-c)2=0,但跨越这一步是 比较 繁难的。若转向观察题设方程的特点入手,迅速发掘出该方程系数为0条件,则该方程的相 等实数根为1,于是由韦达定理得[SX(]a-b[]b-c[SX)]=1问题简捷获证。

结合已知条件

当单独、孤立地审视已知条件已经达到“山重水复疑无路”时,将几个已知条件联系起来审 视,就可以出现“柳暗花明又一村”的新境界,从而挖掘出隐含条件。

例3 在锐角三角形中,tanA,tanB,tanC成等差数列,若f(cos2C)=cos (B+C-A),试求函数f(x)的表达式。

简析:一方面由第一个已知条件得出tanB=[SX(]1[]2[SX)](tanA+tanC), 另一方面由诱导公式得出tanB=-(tanA+tanC)=[SX(]tanA+tanC[]ta nAtanC-1[SX)]。以上二方面结合得出

[SX(]tanA+tanC[]tanAtanC-1[SX)]=[SX(]tanA+tanC[]2[SX)]

2(tanA+tanC)=(tanA+tan)(tanAtanC-1)

2=tanAtanC-1?菀?含条件tanA=[SX(]3[]tanC[SX)]。

∵cos(B+C-A)=cos( -2A)=-cos2A=[SX(]tan2-1[]tan2A+1[SX)] =[SX(]([SX(]3[]tanC[SX)])2-1[]([SX(]3[]tanC[SX)])2+1[SX)]=[SX(]9-t an2C[]9+tan2C[SX)]。

借助直观

有些数学题所给的条件往往不能直接为解题服务,而能够直接为解题服务的一些有效因素却 隐蔽在题目所蕴含的图形的几何性质中,此时,若能以数思形,借助图形直观分析,就可以 迅速获得隐含条件,使问题形象、简明地解决。

例4 点A(a,b)是已知圆D:x2+y2-2dx-2ey+f=0内的一个定点,弦BC与点A组成一个直角 三角形∠BAC=90°。求弦BC中点P的轨迹方程。

解:设弦BC中点P(x,y),∵∠BAC=90°,∴|PA|=|PB|=|PC|。又∵|PD|2+|PC| 2=|CD|2,则有(x-d)2+(y-c)2+(x-a)2+(y-b)2=d2+e2-f,化简得x2 +y2-(e+a)x-(d-b)y+[SX(]1[]2[SX)](a2+b2+f)=0。

这里,画出草图就可揭露出条件|PA|=|PC|,把Rt△ABC与Rt△PCD联系起来问 题就迎刃而解。

转换表述

数学语言的抽象表述常会给我们理解题意带来困难。为此,在解题中,要善于追溯问题的实 际背景,注意转换数学语言,尽量使题目表述通俗化,使隐含条件明朗化。

由上可知,善于挖掘题目中的隐含条件,可以迅速揭开问题的实质,简缩思维过程,优化解 题思路。因此在教学中教师除了要求生具备扎实过硬的基础知识和基本技能外,还要帮助学生掌握严谨的思维方法,养成良好的审题习惯。

image的所有形式?

image的主要形式有:jpg、jpeg、png、gif、bmp、tiff、ai、cdr、eps

在通常情况下面 jpg与jpeg是一样的,只是里面保存的数据不一样,但我们多数使用的是jpg(后缀是小写,大写的有些是无法读写),在图片颜色丰富的地方使用该格式保存,像拍摄的相片,ps合成的图片,经常保存图片时我会压缩20% 保留80%,看上去没有变化,但文件大小小了很多;

png是用于全透明(保存png24)图片,该格式是多数用于小型格式的图片,不然文件会很大;

gif是用于网络图片,可以制作成带有帧的动画图片,图片文件比较小,同时颜色也不是很丰富,不建议用于带简便的图片,除了颜色很浅很简单的切片;

bmp一般是windows保存的高保真图片,图片很大;

tiff一般用于印刷图片,平面设计可以保存格式并发送给制作部门制作实物,图片也一般较大;

ai、cdr、eps是矢量图形,根据自己的使用习惯,可以调整,并没有特别的界限。

发表评论

快捷回复: 表情:
AddoilApplauseBadlaughBombCoffeeFabulousFacepalmFecesFrownHeyhaInsidiousKeepFightingNoProbPigHeadShockedSinistersmileSlapSocialSweatTolaughWatermelonWittyWowYeahYellowdog
评论列表 (暂无评论,92人围观)

还没有评论,来说两句吧...